MCP and the Shift to AI Systems
December 18, 2025
min read

Securing AI in the Shift from Models to Systems
Artificial intelligence has evolved from controlled workflows to fully connected systems.
With the rise of the Model Context Protocol (MCP) and autonomous AI agents, enterprises are building intelligent ecosystems that connect models directly to tools, data sources, and workflows.
This shift accelerates innovation but also exposes organizations to a dynamic runtime environment where attacks can unfold in real time. As AI moves from isolated inference to system-level autonomy, security teams face a dramatically expanded attack surface.
Recent analyses within the cybersecurity community have highlighted how adversaries are exploiting these new AI-to-tool integrations. Models can now make decisions, call APIs, and move data independently, often without human visibility or intervention.
New MCP-Related Risks
A growing body of research from both HiddenLayer and the broader cybersecurity community paints a consistent picture.
The Model Context Protocol (MCP) is transforming AI interoperability, and in doing so, it is introducing systemic blind spots that traditional controls cannot address.
HiddenLayer’s research, and other recent industry analyses, reveal that MCP expands the attack surface faster than most organizations can observe or control.
Key risks emerging around MCP include:
- Expanding the AI Attack Surface
MCP extends model reach beyond static inference to live tool and data integrations. This creates new pathways for exploitation through compromised APIs, agents, and automation workflows.
- Tool and Server Exploitation
Threat actors can register or impersonate MCP servers and tools. This enables data exfiltration, malicious code execution, or manipulation of model outputs through compromised connections.
- Supply Chain Exposure
As organizations adopt open-source and third-party MCP tools, the risk of tampered components grows. These risks mirror the software supply-chain compromises that have affected both traditional and AI applications.
- Limited Runtime Observability
Many enterprises have little or no visibility into what occurs within MCP sessions. Security teams often cannot see how models invoke tools, chain actions, or move data, making it difficult to detect abuse, investigate incidents, or validate compliance requirements.
Across recent industry analyses, insufficient runtime observability consistently ranks among the most critical blind spots, along with unverified tool usage and opaque runtime behavior. Gartner advises security teams to treat all MCP-based communication as hostile by default and warns that many implementations lack the visibility required for effective detection and response.
The consensus is clear. Real-time visibility and detection at the AI runtime layer are now essential to securing MCP ecosystems.
The HiddenLayer Approach: Continuous AI Runtime Security
Some vendors are introducing MCP-specific security tools designed to monitor or control protocol traffic. These solutions provide useful visibility into MCP communication but focus primarily on the connections between models and tools. HiddenLayer’s approach begins deeper, with the behavior of the AI systems that use those connections.
Focusing only on the MCP layer or the tools it exposes can create a false sense of security. The protocol may reveal which integrations are active, but it cannot assess how those tools are being used, what behaviors they enable, or when interactions deviate from expected patterns. In most environments, AI agents have access to far more capabilities and data sources than those explicitly defined in the MCP configuration, and those interactions often occur outside traditional monitoring boundaries. HiddenLayer’s AI Runtime Security provides the missing visibility and control directly at the runtime level, where these behaviors actually occur.
HiddenLayer’s AI Runtime Security extends enterprise-grade observability and protection into the AI runtime, where models, agents, and tools interact dynamically.
It enables security teams to see when and how AI systems engage with external tools and detect unusual or unsafe behavior patterns that may signal misuse or compromise.
AI Runtime Security delivers:
- Runtime-Centric Visibility
Provides insight into model and agent activity during execution, allowing teams to monitor behavior and identify deviations from expected patterns.
- Behavioral Detection and Analytics
Uses advanced telemetry to identify deviations from normal AI behavior, including malicious prompt manipulation, unsafe tool chaining, and anomalous agent activity.
- Adaptive Policy Enforcement
Applies contextual policies that contain or block unsafe activity automatically, maintaining compliance and stability without interrupting legitimate operations.
- Continuous Validation and Red Teaming
Simulates adversarial scenarios across MCP-enabled workflows to validate that detection and response controls function as intended.
By combining behavioral insight with real-time detection, HiddenLayer moves beyond static inspection toward active assurance of AI integrity.
As enterprise AI ecosystems evolve, AI Runtime Security provides the foundation for comprehensive runtime protection, a framework designed to scale with emerging capabilities such as MCP traffic visibility and agentic endpoint protection as those capabilities mature.
The result is a unified control layer that delivers what the industry increasingly views as essential for MCP and emerging AI systems: continuous visibility, real-time detection, and adaptive response across the AI runtime.
From Visibility to Control: Unified Protection for MCP and Emerging AI Systems
Visibility is the first step toward securing connected AI environments. But visibility alone is no longer enough. As AI systems gain autonomy, organizations need active control, real-time enforcement that shapes and governs how AI behaves once it engages with tools, data, and workflows. Control is what transforms insight into protection.
While MCP-specific gateways and monitoring tools provide valuable visibility into protocol activity, they address only part of the challenge. These technologies help organizations understand where connections occur.
HiddenLayer’s AI Runtime Security focuses on how AI systems behave once those connections are active.
AI Runtime Security transforms observability into active defense.
When unusual or unsafe behavior is detected, security teams can automatically enforce policies, contain actions, or trigger alerts, ensuring that AI systems operate safely and predictably.
This approach allows enterprises to evolve beyond point solutions toward a unified, runtime-level defense that secures both today’s MCP-enabled workflows and the more autonomous AI systems now emerging.
HiddenLayer provides the scalability, visibility, and adaptive control needed to protect an AI ecosystem that is growing more connected and more critical every day.
Learn more about how HiddenLayer protects connected AI systems – visit
HiddenLayer | Security for AI or contact sales@hiddenlayer.com to schedule a demo
Stay Ahead of AI Security Risks
Get research-driven insights, emerging threat analysis, and practical guidance on securing AI systems—delivered to your inbox.


