Innovation Hub

Featured Posts

Insights
xx
min read

Introducing Workflow-Aligned Modules in the HiddenLayer AI Security Platform

Insights
xx
min read

Inside HiddenLayer’s Research Team: The Experts Securing the Future of AI

Insights
xx
min read

Why Traditional Cybersecurity Won’t “Fix” AI

Get all our Latest Research & Insights

Explore our glossary to get clear, practical definitions of the terms shaping AI security, governance, and risk management.

Research

Research
xx
min read

Agentic ShadowLogic

Research
xx
min read

MCP and the Shift to AI Systems

Research
xx
min read

The Lethal Trifecta and How to Defend Against It

Research
xx
min read

EchoGram: The Hidden Vulnerability Undermining AI Guardrails

Videos

Report and Guides

Report and Guide
xx
min read

Securing AI: The Technology Playbook

Report and Guide
xx
min read

Securing AI: The Financial Services Playbook

Report and Guide
xx
min read

AI Threat Landscape Report 2025

HiddenLayer AI Security Research Advisory

CVE-2025-62354
XX
min read

Allowlist Bypass in Run Terminal Tool Allows Arbitrary Code Execution During Autorun Mode

When in autorun mode with the secure ‘Follow Allowlist’ setting, Cursor checks commands sent to run in the terminal by the agent to see if a command has been specifically allowed. The function that checks the command has a bypass to its logic, allowing an attacker to craft a command that will execute non-whitelisted commands.

SAI-ADV-2025-012
XX
min read

Data Exfiltration from Tool-Assisted Setup

Windsurf’s automated tools can execute instructions contained within project files without asking for user permission. This means an attacker can hide instructions within a project file to read and extract sensitive data from project files (such as a .env file) and insert it into web requests for the purposes of exfiltration.

CVE-2025-62353
XX
min read

Path Traversal in File Tools Allowing Arbitrary Filesystem Access

A path traversal vulnerability exists within Windsurf’s codebase_search and write_to_file tools. These tools do not properly validate input paths, enabling access to files outside the intended project directory, which can provide attackers a way to read from and write to arbitrary locations on the target user’s filesystem.

CVE-2025-62356
XX
min read

Symlink Bypass in File System MCP Server Leading to Arbitrary Filesystem Read

A symlink bypass vulnerability exists inside of the built-in File System MCP server, allowing any file on the filesystem to be read by the model. The code that validates allowed paths can be found in the file: ai/codium/mcp/ideTools/FileSystem.java, but this validation can be bypassed if a symbolic link exists within the project.

In the News

News
XX
min read
HiddenLayer Selected as Awardee on $151B Missile Defense Agency SHIELD IDIQ Supporting the Golden Dome Initiative

Underpinning HiddenLayer’s unique solution for the DoD and USIC is HiddenLayer’s Airgapped AI Security Platform, the first solution designed to protect AI models and development processes in fully classified, disconnected environments. Deployed locally within customer-controlled environments, the platform supports strict US Federal security requirements while delivering enterprise-ready detection, scanning, and response capabilities essential for national security missions.

News
XX
min read
HiddenLayer Announces AWS GenAI Integrations, AI Attack Simulation Launch, and Platform Enhancements to Secure Bedrock and AgentCore Deployments

As organizations rapidly adopt generative AI, they face increasing risks of prompt injection, data leakage, and model misuse. HiddenLayer’s security technology, built on AWS, helps enterprises address these risks while maintaining speed and innovation.

News
XX
min read
HiddenLayer Joins Databricks’ Data Intelligence Platform for Cybersecurity

On September 30, Databricks officially launched its <a href="https://www.databricks.com/blog/transforming-cybersecurity-data-intelligence?utm_source=linkedin&amp;utm_medium=organic-social">Data Intelligence Platform for Cybersecurity</a>, marking a significant step in unifying data, AI, and security under one roof. At HiddenLayer, we’re proud to be part of this new data intelligence platform, as it represents a significant milestone in the industry's direction.

Insights
xx
min read

The Beginners Guide to LLMs and Generative AI

Large Language Models are quickly sweeping the globe. In a world driven by artificial intelligence (AI), Large Language Models (LLMs) are leading the way, transforming how we interact with technology. The unprecedented rise to fame leaves many reeling. What are LLM’s? What are they good for? Why can no one stop talking about them? Are they going to take over the world? As the number of LLMs grows, so does the challenge of navigating this wealth of information. That’s why we want to start with the basics and help you build a foundational understanding of the world of LLMs.

Insights
xx
min read

Securing Your AI System with HiddenLayer

Amidst escalating global AI regulations, including the European AI Act and Biden’s Executive AI Order, in addition to the release of recent AI frameworks by prominent industry leaders like Google and IBM, HiddenLayer has been working diligently to enhance its Professional Services to meet growing customer demand. Today, we are excited to bring upgraded capabilities to the market, offering customized offensive security evaluations for companies across every industry, including an AI Risk Assessment, ML Training, and, maybe most excitingly, our Red Teaming services.

Insights
xx
min read

A Guide to Understanding New CISA Guidelines

Artificial intelligence (AI) is the latest, and one of the largest, advancements of technology to date. Like any other groundbreaking technology, the potential for greatness is paralleled only by the potential for risk. AI opens up pathways of unprecedented opportunity. However, the only way to bring that untapped potential to fruition is for AI to be developed, deployed, and operated securely and culpably. This is not a technology that can be implemented first and secured second. When it comes to utilizing AI, cybersecurity can no longer trail behind and play catch up. The time for adopting AI is now. The time for securing it was yesterday.

Insights
xx
min read

What SEC Rules Mean for your AI

On July 26th, 2023 the Securities and Exchange Commission (SEC) released its final rule on Cybersecurity Risk Management, Strategy, Governance, and Incident Disclosure. Organizations now have 5 months to craft and confirm a compliance plan before the new regulations go into effect mid-December. The revisions from these proposed rules aim to streamline the disclosure requirements in many ways. But what exactly are these SEC regulations requiring you to disclose, and how much? And does this apply to my organization’s AI?

Insights
xx
min read

The Real Threats to AI Security and Adoption

AI is the latest, and likely one of the largest, advancements in technology of all time. Like any other new innovative technology, the potential for greatness is paralleled by the potential for risk. As technology evolves, so do threat actors. Despite how state-of-the-art Artificial Intelligence (AI) seems, we’ve already seen it being threatened by new and innovative cyber security attacks everyday.&nbsp;

Insights
xx
min read

A Beginners Guide to Securing AI for SecOps

Artificial Intelligence (AI) and Machine Learning (ML), the most common application of AI, are proving to be a paradigm-shifting technology. From autonomous vehicles and virtual assistants to fraud detection systems and medical diagnosis tools, practically every company in every industry is entering into an AI arms race seeking to gain a competitive advantage by utilizing ML to deliver better customer experiences, optimize business efficiencies, and accelerate innovative research.&nbsp;

Insights
xx
min read

MITRE ATLAS: The Intersection of Cybersecurity and AI

At HiddenLayer, we publish a lot of technical research about Adversarial Machine Learning. It’s what we do. But unless you are constantly at the bleeding edge of cybersecurity threat research and artificial intelligence, like our SAI Team, it can be overwhelming to understand how urgent and important this new threat vector can be to your organization. Thankfully, MITRE has focused its attention towards educating the general public about Adversarial Machine Learning and security for AI systems.

Insights
xx
min read

Safeguarding AI with AI Detection and Response

In previous articles, we’ve discussed the ubiquity of AI-based systems and the risks they’re facing; we’ve also described the common types of attacks against machine learning (ML) and built a list of adversarial ML tools and frameworks that are publicly available. Today, the time has come to talk about countermeasures.

Insights
xx
min read

The Tactics Techniques of Adversarial Machine Learning

Previously, we discussed the emerging field of adversarial machine learning, illustrated the lifecycle of an ML attack from both an attacker’s and defender’s perspective, and gave a high-level introduction to how ML attacks work. In this blog, we take you further down the rabbit hole by outlining the types of adversarial attacks that should be on your security radar.

research
xx
min read

Agentic ShadowLogic

research
xx
min read

MCP and the Shift to AI Systems

research
xx
min read

The Lethal Trifecta and How to Defend Against It

research
xx
min read

EchoGram: The Hidden Vulnerability Undermining AI Guardrails

research
xx
min read

Same Model, Different Hat

research
xx
min read

The Expanding AI Cyber Risk Landscape

research
xx
min read

The First AI-Powered Cyber Attack

research
xx
min read

Prompts Gone Viral: Practical Code Assistant AI Viruses

research
xx
min read

Persistent Backdoors

research
xx
min read

Visual Input based Steering for Output Redirection (VISOR)

research
xx
min read

How Hidden Prompt Injections Can Hijack AI Code Assistants Like Cursor

research
xx
min read

Introducing a Taxonomy of Adversarial Prompt Engineering

Report and Guide
xx
min read

Securing AI: The Technology Playbook

Report and Guide
xx
min read

Securing AI: The Financial Services Playbook

Report and Guide
xx
min read

AI Threat Landscape Report 2025

Report and Guide
xx
min read

HiddenLayer Named a Cool Vendor in AI Security

Report and Guide
xx
min read

A Step-By-Step Guide for CISOS

Report and Guide
xx
min read

AI Threat landscape Report 2024

Report and Guide
xx
min read

HiddenLayer and Intel eBook

Report and Guide
xx
min read

Forrester Opportunity Snapshot

news
xx
min read

HiddenLayer Selected as Awardee on $151B Missile Defense Agency SHIELD IDIQ Supporting the Golden Dome Initiative

news
xx
min read

HiddenLayer Announces AWS GenAI Integrations, AI Attack Simulation Launch, and Platform Enhancements to Secure Bedrock and AgentCore Deployments

news
xx
min read

HiddenLayer Joins Databricks’ Data Intelligence Platform for Cybersecurity

news
xx
min read

HiddenLayer Appoints Chelsea Strong as Chief Revenue Officer to Accelerate Global Growth and Customer Expansion

news
xx
min read

HiddenLayer Listed in AWS “ICMP” for the US Federal Government

news
xx
min read

New TokenBreak Attack Bypasses AI Moderation with Single-Character Text Changes

news
xx
min read

Beating the AI Game, Ripple, Numerology, Darcula, Special Guests from Hidden Layer… – Malcolm Harkins, Kasimir Schulz – SWN #471

news
xx
min read

All Major Gen-AI Models Vulnerable to ‘Policy Puppetry’ Prompt Injection Attack

news
xx
min read

One Prompt Can Bypass Every Major LLM’s Safeguards

news
xx
min read

Cyera and HiddenLayer Announce Strategic Partnership to Deliver End-to-End AI Security

news
xx
min read

HiddenLayer Unveils AISec Platform 2.0 to Deliver Unmatched Context, Visibility, and Observability for Enterprise AI Security

news
xx
min read

HiddenLayer AI Threat Landscape Report Reveals AI Breaches on the Rise;

SAI Security Advisory

Eval on query parameters allows arbitrary code execution in Vector Database integrations

An arbitrary code execution vulnerability exists inside the _dispatch_update function of the mindsdb/integrations/libs/vectordatabase_handler.py file. The vulnerability requires the attacker to be authorized on the MindsDB instance and allows them to run arbitrary Python code on the machine the instance is running on. The vulnerability exists because of the use of an unprotected eval function, which can be used with multiple integrations.

SAI Security Advisory

Eval on query parameters allows arbitrary code execution in Weaviate integration

An arbitrary code execution vulnerability exists inside the select function of the mindsdb/integrations/handlers/weaviate_handler/weaviate_handler.py file in the Weaviate integration. The vulnerability requires the attacker to be authorized on the MindsDB instance and allows them to run arbitrary Python code on the machine the instance is running on. The vulnerability exists because of the use of an unprotected eval function.

SAI Security Advisory

Unsafe deserialization in Datalab leads to arbitrary code execution

An arbitrary code execution vulnerability exists inside the serialize function of the cleanlab/datalab/internal/serialize.py file in the Datalabs module. The vulnerability requires a maliciously crafted datalabs.pkl file to exist within the directory passed to the Datalabs.load function, executing arbitrary code on the system loading the directory.

SAI Security Advisory

Eval on CSV data allows arbitrary code execution in the MLCTaskValidate class

An arbitrary code execution vulnerability exists inside the validate function of the ClassificationTaskValidate class in the autolabel/src/autolabel/dataset/validation.py file. The vulnerability requires the victim to load a malicious CSV dataset with the optional parameter ‘validate’ set to True while using a specific configuration. The vulnerability allows an attacker to run arbitrary Python code on the machine the CSV file is loaded on because of the use of an unprotected eval function.

SAI Security Advisory

Eval on CSV data allows arbitrary code execution in the ClassificationTaskValidate class

An arbitrary code execution vulnerability exists inside the validate function of the ClassificationTaskValidate class in the autolabel/src/autolabel/dataset/validation.py file. The vulnerability requires the victim to load a malicious CSV dataset with the optional parameter ‘validate’ set to True while using a specific configuration. The vulnerability allows an attacker to run arbitrary Python code on the machine the CSV file is loaded on because of the use of an unprotected eval function.

SAI Security Advisory

Eval on CSV data allows arbitrary code execution in the MLCTaskValidate class

An arbitrary code execution vulnerability exists inside the validate function of the MLCTaskValidate class in the autolabel/src/autolabel/dataset/validation.py Python file. The vulnerability requires the victim to load a malicious CSV dataset with the optional parameter ‘validate’ set to True while using a specific configuration. The vulnerability allows an attacker to run arbitrary Python code on the program’s machine because of the use of an unprotected eval function.

SAI Security Advisory

Eval on CSV data allows arbitrary code execution in the ClassificationTaskValidate class

An arbitrary code execution vulnerability exists inside the validate function of the ClassificationTaskValidate class in the autolabel/src/autolabel/dataset/validation.py file. The vulnerability requires the victim to load a malicious CSV dataset with the optional parameter ‘validate’ set to True while using a specific configuration. The vulnerability allows an attacker to run arbitrary Python code on the machine the CSV file is loaded on because of the use of an unprotected eval function.

SAI Security Advisory

Safe_eval and safe_exec allows for arbitrary code execution

Execution of arbitrary code can be achieved via the safe_eval and safe_exec functions of the llama-index-experimental/llama_index/experimental/exec_utils.py Python file. The functions allow the user to run untrusted code via an eval or exec function while only permitting whitelisted functions. However, an attacker can leverage the whitelisted pandas.read_pickle function or other 3rd party library functions to achieve arbitrary code execution. This can be exploited in the Pandas Query Engine.

SAI Security Advisory

Exec on untrusted LLM output leading to arbitrary code execution on Evaporate integration

Execution of arbitrary code can be achieved through an unprotected exec statement within the run_fn_on_nodes function of the llama_index/llama-index-integrations/program/llama-index-program-evaporate/llama_index/program/evaporate/extractor Python file in the ‘evaporate’ integration. This may be triggered if a victim user were to run the evaporate function on a malicious information source, such as a page on a website, containing a hidden prompt that is then indirectly injected into the LLM, causing it to return a malicious function which is run via the exec statement.

SAI Security Advisory

Crafted WiFI network name (SSID) leads to arbitrary command injection

The net_service_thread function in libwyzeUtilsPlatform.so spawns a shell command containing a user-specified WiFi network name (SSID) in an unsafe way, which can lead to arbitrary command injection as root during the camera setup process.

SAI Security Advisory

Deserialization of untrusted data leading to arbitrary code execution

Execution of arbitrary code can be achieved through the deserialization process in the tensorflow_probability/python/layers/distribution_layer.py file within the function _deserialize_function. An attacker can inject a malicious pickle object into an HDF5 formatted model file, which will be deserialized via pickle when the model is loaded, executing the malicious code on the victim machine. An attacker can achieve this by injecting a pickle object into the DistributionLambda layer of the model under the make_distribution_fn key.

SAI Security Advisory

Remote Code Execution on Local System via MLproject YAML File

A code injection vulnerability exists within the ML Project run procedure in the _run_entry_point function, within the projects/backend/local.py file. An attacker can package an MLflow Project where the MLproject main entrypoint command contains arbitrary code (or an operating system appropriate command), which will be executed on the victim machine when the project is run.

Stay Ahead of AI Security Risks

Get research-driven insights, emerging threat analysis, and practical guidance on securing AI systems—delivered to your inbox.

By submitting this form, you agree to HiddenLayer's Terms of Use and acknowledge our Privacy Statement.

Thanks for your message!

We will reach back to you as soon as possible.

Oops! Something went wrong while submitting the form.